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Subgroups and Changes of Standard Setting of Triclinic and Monoclinic Space Groups
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The paper gives the first complete list of subgroups and changes of standard setting for every triclinic and
monoclinic space group. The method determines the conditions that the standard setting of a group g must
fulfil, with respect to the standard setting of a group G, so that the generators of g belong to G.

A few years ago, a new interest was taken in the study
of subgroups (which are again space groups) of space
groups and especially the study of maximal subgroups.
There are two categories of maximal subgroups: sub-
groups having the same translation lattice (transla-
tionengleich) and subgroups belonging to the same
crystal class (klassengleich) as the space group. Non-
maximal subgroups are infinite in .number whereas
translationengleich maximal subgroups are finite in
number; on the other hand klassengleich maximal sub-
groups whose standard symbol is distinct from the
space-group standard symbol are also finite in number
(Neubuser & Wondratschek, 1966a, b), whereas max-
imal subgroups whose standard symbol is the same as
for the space group (isosymbolic subgroups) may be
infinite in number. These are the reasons why most
papers have essentially been devoted to nonisosym-
bolic maximal subgroups (Neubuser & Wondratschek,
19664, b; Boyle & Lawrenson, 1972q, b; Bertaut, 19764,
b). One of us (Billiet, 1973), using a different method,
derived all isosymbolic, maximal and nonmaximal,
subgroups from every space group; this method has
been extended to other types of maximal and non-
maximal subgroups (Billiet, Sayari & Zarrouk, 1977),
making possible the systematic derivation of all the
subgroups of every space group. The method deter-
mines the conditions that the standard setting (0,4, b,¢)
of a group g must fulfil, with reference to the standard
setting (0, A4, B, C) of a group G, so that the generators
of g do belong to G, i.e., g is indeed a subgroup of G;
thus the coordinates (X,, Y,,Z,) of the origin o of the g
setting, with reference to (0, 4, B, C), are found likewise
to be the coefficients of the square matrix S of the
transformation from the vectors (4, B, C) to the vectors
(a,b,c), i.e. (a,b,c)=(A,B,C)S; the matrix determinant,
Det 8, is necessarily positive because standard settings
are right-handed. Therefore every standard setting of
absolutely any subgroup — maximal or nonmaximal,
translationengleich, klassengleich, isosymbolic or not —
of every space group can be obtained. If the standard
symbol of g is the same as for G and if Det S=1, then

g is identical to G and (o,a,b,c) is another standard
setting of G. Therefore the method also allows the

Table 1. Transformation matrices for triclinic and
monoclinic space groups

For all the monoclinic space groups and subgroups the available
standard setting is the ‘first setting’.

Triclinic

my, my; my3
myy Myp M3
M3y M3z My
T,: all coefficients are integers; Det T; > 1.

T,: 2m,, and 2mj, are both even or odd integers; 2m,, and 2mj, are

both even or odd integers; 2m, ; and 2m,; are both even or odd
integers; m,,, m,; and m,; are integers; Det T, > 3.

T=

5

Monoclinic
myy myz 0

M=|m;, my; 0 I myy,my,,my,, My, and ms; are integers in all
0 O m3;3( thefollowing matrices.

M, : no special values; Det M, >1.

M, : myyisodd; Det M,>1.

M3 : msy;yiseven; Det M3>2.

M, : my, and m,, are odd; Det M, >1.

M, : m,,is even; m,, is odd; Det Ms> 1.

Mg : my,is odd; m,, is even; Det Mg > 1.

M, : my, and m,, are even; Det M, >2.

Mg : my,, my, and mj; are odd; Det Mg> 1.

Mgy . my, is even; m,, and my; are odd; Det Mg> 1.

: m,, and my, are odd; m,, is even; Det M, o> 1.

: m,, and m,, are even; my; is odd; Det M, >2.

: my, and m,, are odd; m;; is even; Det M |, >2.

: m,, and ms; are even; m,, is odd; Det M ;> 2.

. m;,is odd; m,, and m;, are even; Det M, >2.

: my,, My, and my; are even; Det M, 5 >4.

: my, and ms; are both even or odd; m,, iseven; Det M (> 1.

: my, and m;; are both even or odd; m,, and m,, are odd;
m,, is even; Det M ;> 1.

: m,, and m;5 are both even or odd; m;, and m,, are even;
ms, is odd; Det M g> 1.

: m,, and ms, are both even or odd; m,, is odd: m,; and m,,
are even; Det M,4>2.

: my, and ms are both even or odd; m,,, m,, and m,, are even;
Det Mo >2.

: my,. my, and ms; are even; Det M, >4.

: my,, m,, my; and my; are even; m,, is odd; Det M,, >4.

T My, My, My, Mo, and mys are even; Det M ;3> 8.
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determination of all the changes of standard setting
of the space groups (Zarrouk & Billiet, 1975; Zarrouk,
1976; Billiet, Sayari & Zarrouk, 1977). As a result, one
can also characterize the collection of settings which
are relevant to a given subgroup g; of space group G.
Numerous details about this derivation can be found

Table 2. Coordinates of permissible origins

X, Y,Z,: the coordinates of the origin o are real numbers in all
the following cases.

0,: no special values.

0,: 2Z,is any integer.

03: 4Z,is any odd integer.

04: 2X, and 2Y, are integers.

0s: 4X,is any odd integer; 2Y, is any integer.

0¢: 2X, is any integer; 4Y, is any odd integer.

04: 4X, and 4Y, are odd integers.

0g: 2X,, 2Y, and 2Z, are integers.

09: 4X, and 4Z, are odd integers; 2Y, is any integer.

Table 3. Appropriate matrices and origins for every
subgroup and change of standard setting for all
triclinic and monoclinic space groups

Space group
P1 P1*: (T,0y)
P1 P1:(Ty,0,); PT*: (T,,03)
P2 PL1:(Ty,04); P2*:(M4,04); P2,:(M3,04); B2:(M3,,04)
P2, Pl:(Ty,0y); P2,*: (M3,04)
B2 P1: (Tp,01); P2: (My,04); P2y: (M3,05), (M3,04);
B2*: (M 6,04)
Pm P1:(T,,0,); Pm*: (M,,0,); Pb: (M,0,);
Bm: (M;,,0,); Bb: (M33,0,)
Pb Pl:(Ty,0,); Pb*: (Ms,0,); Bb: (M,,,0,)
Bm P1: (Ty,04); Pm: (My,0,); Pb: (Me,03), (M7,05);
Bm*: (M 6,0,); Bb: (M 4,03), (M 34,0,)
Bb P1: (Ty,01); Pb: (M4,05), (Ms,02); Bb*: (M5,03),
(M y5,0,) _
P1:(Ty,01); P1:(T},08); P2: (M,,04); P2y: (M3,04);
B2: (M,,,0,); Pm: (M,,0,); Pb: (M;,0,); Bm:
(M3,,05); Bb: (My3,0,5); P2/m*: (My,08); P2,/m:
(M3,08): B2/m: (M;y,08); P2/b: (M5,08); P2,/b:
(M (5,08); B2/b: (M33,04)
P1:(Ty,04); P1:(Ti,08); P2,: (M3,04); Pm: (M, 05);
Pb: (M1,05); Bm: (M2,,03); Bb: (M33,03); P2;/m*:
(M ,04); P21/b_1 (M, ,,08)
P1: (Ty,0y); P1: (T3,08), (T2,00); P2: (My,04); P2;:
(M3,05), (M3,04); B2: (M6,04); Pm: (My,0,); Pb:
(Mg,03), (M4,02); Bm: (Myg,0,); Bb: (Mys,03),
(M 36,05); P2/m: (M ,05); P2,/m: (M3,00), (M3,04);
B2/m*: (M 6,08); P2/b: (Mg,04), (M+,04); P2,/b:
(M10,08), (M1,00), (M 4,04), (M,5,08); B2/b:
(M 9,09), (MZ(_)sOS)
P1:(Ty,04); P1: (T},04); P2: (M},06); P2y: (M3,06);
B2: (M3,,06); Pb: (Ms,05); Bb: (M3;,0,); P2/b*:
(M, 08); P21/’13 (M 3,0g); B2/b: (M ;,,08)
Pl:(Th,0,); P1:{Th,08); P2,:(M2,06); Pb:(Ms,0,);
Bb: (M3;,03); P2,/b*: (Mo,08)
P1: (Ty,0,); PI: (T;,08), (T2,00); P2: (My,0¢); P2;:
(M3,07), (M3,06); B2: (M 6,06); Pb: (M4,03),
(Ms,03); Bb: (My5,03), (Myg,0,); P2/b: (Ma,09),
(Ms,08); P2,/b: (Mg,08), (Mg,00), (M,,00),
(M3,05); B2/b*: (M4,04), (M 13,05)

* Change in standard setting if Det S=1; isosymbolic subgroup
if Det $> 1.

P2/m

P2,/m

B2/m

P2/b

P2,/b
B2/b

SUBGROUPS AND CHANGES OF STANDARD SETTING OF SPACE GROUPS

elsewhere (Billiet, 1973; Sayari & Billiet, 1975; Sayari,
1976; Billiet, Sayari & Zarrouk, 1977).

The aim of the present paper is to illustrate the ef-
ficiency of the method by listing completely the sub-
groups and the changes of standard setting of the
triclinic and monoclinic space groups. Transformation
matrices are given in Table 1; coordinates of permis-
sible origins are given in Table 2. In Table 3, appro-
priate matrices (from Table 1) and origins (from Table
2) are chosen for every subgroup and change of stan-
dard setting for each triclinic and monoclinic space
group. Proofs of the completeness of the tables can be
found in other papers (Billiet, 1973; Billiet, Sayari &
Zarrouk, 1977). Analogous tables are under prepara-
tion for other crystal systems. We have not noted any
substantial dissension with other partial results from
the literature.

In conclusion, we remark that several previous
works have been devoted to the determination of
maximal subgroups; their purpose is attractive: by
iteration of their method one can get sequences of
maximal subgroups and eventually determine all the
subgroups of a given space group; but our own experi-
ence has pointed out that the direct derivation of all
the subgroups is very easy compared to the specific
derivation of maximal subgroups; this may appear
surprising. As a matter of fact, the investigation of the
maximal subgroups is a very interesting and difficult
mathematical problem, particularly the investigation
of the isosymbolic maximal subgroups of space groups
such as P1, P2, P3, P4, P6 etc. (Sayari, 1976). We think,
having ourselves succumbed to it, that the endeavour
to specifically derive maximal subgroups has slowed
down the resolution of the fundamental crystallo-
graphic problem: the determination of all subgroups of
a space group.
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